
Message passing and shared address space
parallelism on an SMP cluster

Hongzhang Shan a, Jaswinder P. Singh b, Leonid Oliker a,
Rupak Biswas c,*

a NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

c NASA Advanced Supercomputing (NAS) Division, NASA Ames Research Center, Mail Stop T27A-1,

Moffett Field, CA 94035, USA

Received 1 February 2001; received in revised form 25 September 2002; accepted 30 September 2002

Abstract

Currently, message passing (MP) and shared address space (SAS) are the two leading par-

allel programming paradigms. MP has been standardized with MPI, and is the more common

and mature approach; however, code development can be extremely difficult, especially for ir-

regularly structured computations. SAS offers substantial ease of programming, but may suffer

from performance limitations due to poor spatial locality and high protocol overhead. In this

paper, we compare the performance of and the programming effort required for six applica-

tions under both programming models on a 32-processor PC-SMP cluster, a platform that

is becoming increasingly attractive for high-end scientific computing. Our application suite

consists of codes that typically do not exhibit scalable performance under shared-memory pro-

gramming due to their high communication-to-computation ratios and/or complex communi-

cation patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI

for most of our applications, while being competitive for the others. A hybrid MPIþ SAS

strategy shows only a small performance advantage over pure MPI in some cases. Finally, im-

proved implementations of two MPI collective operations on PC-SMP clusters are presented.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: PC cluster; Message passing; Distributed shared memory; Benchmark applications; Parallel

performance

*Corresponding author. Tel.: +1-650-604-4411; fax: +1-650-604-3957.

E-mail addresses: hshan@lbl.gov (H. Shan), jps@cs.princeton.edu (J.P. Singh), loliker@lbl.gov

(L. Oliker), rbiswas@nas.nasa.gov (R. Biswas).

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8191 (02 )00222-3

www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 167–186

mail to: hshan@lbl.gov


1. Introduction

The emergence of scalable computer architectures using clusters of PCs (or PC-

SMPs) with commodity networking has made them attractive platforms for high-

end scientific computing. Currently, message passing (MP) and shared address space
(SAS) are the two leading programming paradigms for these systems. MP has been

standardized with MPI, and is the more common and mature parallel programming

approach. It provides both functional and performance portability; however, code

development can be extremely difficult, especially for irregularly structured compu-

tations [15,16]. A coherent SAS has been shown to be very effective at moderate

scales for a wide range of applications when supported efficiently in hardware

[9,10,22–24]. The automatic management of naming and coherent replication in

the SAS model also substantially eases the programming task compared to explicit
MP, particularly for complex irregular applications that are becoming increasingly

routine as multiprocessing matures. This programming advantage can often be

translated directly into performance gains [24,25]. Even as hardware-coherent ma-

chines replace traditional distributed-memory systems at the high end, clusters of

commodity PCs and PC-SMPs are becoming popular for scalable computing. On

these systems, the MP paradigm is dominant while the SAS model is unproven since

it is implemented in software. Given the ease of SAS programming, it is therefore

important to understand its performance tradeoffs with MP on commodity cluster
platforms.

Approaches to support SAS in software across clusters differ not only in the spe-

cialization and efficiencies of networks but also in the granularities at which they

provide coherence. Fine-grained software coherence uses either code instrumenta-

tion [19,20] for access control or commodity-oriented hardware support [18] with

the protocol implemented in software. Page-grained software coherence takes advan-

tage of the virtual memory management facilities to provide replication and coher-

ence at page granularity [12]. To alleviate false sharing and fragmentation problems,
a relaxed consistency model is used to buffer coherence actions. Lu et al. [13] com-

pared the performance of PVM and the TreadMarks page-based software shared-

memory library on an 8-processor network of ATM-connected workstations and

on an 8-processor IBM SP2. They found that TreadMarks generally performs

slightly worse. Karlsson and Brorsson [11] compared the characteristics of commu-

nication patterns in MP and page-based software shared-memory programs, using

MPI and TreadMarks running on an SP2. They found that the fraction of small mes-

sages in the TreadMarks executions lead to poor performance. However, the plat-
forms used by both these groups were of much lower performance, smaller scale,

and not SMP based. In addition, the protocols used for these experiments were quite

inefficient. Recently, both the communication network and the protocols for shared

virtual memory (SVM) have made great progress. Some GB/s networks have been

put into use. A new SVM protocol, called GeNIMA [2], for page-grained SAS on

clusters uses general-purpose network interface support to significantly reduce pro-

tocol overheads. It has been shown to perform quite well for medium-size systems on

a fairly wide range of applications, achieving at least half the parallel efficiency of a

168 H. Shan et al. / Parallel Computing 29 (2003) 167–186



high-end hardware-coherent system and often exhibiting comparable behavior [2,8].

Thus, a study comparing the performance of using GeNIMA against the dominant

way of programming for clusters today, namely MPI, becomes necessary and impor-

tant.

In this paper, we compare performance of the MP and SAS programming models
using the best implementations available to us (MPI/Pro from MPI Software Tech-

nology, for MPI, and the GeNIMA SVM protocol for SAS) on a cluster of eight

4-way SMPs (a total of 32 processors) running Windows NT 4.0. Our application

suite includes codes that scale well on tightly coupled machines, as well as those that

present a challenge to scalable performance because of their high communication-

to-computation ratios and/or complex communication patterns. Our results show

that if very high performance is the goal, the difficulty of MP programming appears

to be necessary for commodity SMP clusters of today. Instead, if ease of programming
is important, then SAS provides it at roughly a factor-of-two deterioration in perfor-

mance for many applications, and somewhat less for others. This is encouraging for

SVM, given the diverse nature of our application suite and the relative maturity of

the MPI library. Application-driven research into coherence protocols and extended

hardware support should reduce SVM and SAS overheads on future systems.

We also investigated a hybrid strategy by implementing SAS codes within each

SMP while using MP among the SMP nodes. This allows codes to potentially benefit

from both loop-level and domain-level parallelism. Although this hybrid program-
ming model is the best mapping to our underlying architecture, it has the disadvan-

tages of adversely affecting portability and increasing code complexity. Furthermore,

results show only a small performance gain over the pure MPI versions for a subset

of our applications. Finally, we present improved implementations of two MPI col-

lective operations (MPI_Allreduce and MPI_Allgather) on PC-SMP clusters.

Results show that these new algorithms achieve significant improvements over the

default MPI/Pro implementation.

The remainder of this paper is organized as follows. Section 2 describes our PC
cluster platform, and the implementation of the two programming models. The

benchmark applications are briefly described in Section 3, as are the modifications

that were made to improve their cluster performance. Performance results are pre-

sented and critically analyzed in Section 4. Section 5 explores new algorithms to ef-

ficiently implement two collective functions of MPI. Section 6 summarizes our key

conclusions.

2. Platform and programming models

The platform used for this study is a cluster of eight 4-way 200 MHz Pentium Pro

SMPs located at Princeton University. Each of the 32 processors has separate 8 KB

data and instruction L1 caches, and a unified 4-way set-associative 512 KB L2 cache.

Each of the eight nodes runs Windows NT 4.0, has 512 MB of main memory, and is

connected to other nodes either by Myrinet [3] or Giganet [6]. The SAS and MP pro-

gramming models are built in software on top of these two networks respectively. All

H. Shan et al. / Parallel Computing 29 (2003) 167–186 169



our MPI and SAS codes are compiled using the cl compiler provided by Microsoft

Visual Studio 6.0 with the standard compilation options.

2.1. SAS programming model

Much research has been done in the design and implementation of SAS for clus-

tered architectures, both at page and at finer fixed granularities through code instru-

mentation. Among the most popular ways to support a coherent SAS in software on

clusters is page-based SVM. SVM provides replication and coherence at the page

granularity by taking advantage of virtual memory management facilities. To allevi-

ate problems with false sharing and fragmentation, SVM uses a relaxed memory con-

sistency model to buffer coherence actions such as invalidations or updates, and

postpones them until a synchronization point. Multiple writer protocols are used
to allow more than one processor to modify copies of a page locally and incoherently

between synchronizations, thereby reducing the impact of write-write false sharing

and making the page consistent only when needed by applying diffs and write

notices. Many distinct protocols have been developed which use different timing

strategies to propagate write notices and apply the invalidations to pages. Re-

cently, a new protocol for SVM called GeNIMA has been developed that shows

good performance on moderate-scale systems for a wide spectrum of applications,

achieving at least half the parallel efficiency of a high-end hardware-coherent ma-
chine [2,8]. It uses general-purpose network interface support to significantly im-

prove protocol overheads. Thus, we select GeNIMA as our protocol for the SAS

programming model. It is built on top of VMMC, a high-performance, user-level vir-

tual memory mapped communication library [5]. VMMC itself runs on the Myrinet

network [3].

The SMP nodes in our cluster are connected to a Myrinet system area network via

a PCI bus. A single 16-way Myrinet crossbar switch is used to minimize contention

in the interconnect. Each network interface has a 33 MHz programmable processor
and connects the node to the network with two unidirectional links of 160 MB/s peak

bandwidth. The actual node-to-network bandwidth, however, is constrained by the

133 MB/s PCI bus. The parallelism constructs and calls needed by the SAS programs

are identical to those used in our hardware-coherent platform (SGI Origin2000) im-

plementation [22–24], making portability trivial between these systems.

2.2. MP programming model

The MP implementation used in this work is MPI/Pro from MPI Software Tech-

nology, and is developed directly on top of Giganet networks [6] by the VIA [27] in-

terface. By selecting MPI/Pro instead of building our own MPI library from VMMC,

we can compare the best known versions of both programming models. In fact, MPI/

Pro uses the underlying shared memory to communication within a single PC node.

Thus our final conclusions are not affected by a potentially poor implementation of

the communication layer. Fortunately, as shown in Table 1, VIA and VMMC have

similar communication times for a range of message sizes on our cluster platform.

170 H. Shan et al. / Parallel Computing 29 (2003) 167–186



Giganet performs somewhat better for short messages while Myrinet has a small ad-

vantage for larger messages. There should thus be little performance difference for

similar MPI implementations across these two networks. Note that the Giganet net-

work interfaces are also connected together by a single crossbar switch.

3. Benchmark applications

Our application suite consists of codes used in previous studies to examine the

performance and implementation complexity of various programming models on

hardware-supported cache-coherent platforms [21–24]. These codes include regular

applications (FFT, OCEAN, and LU) as well as irregularly structured applications

(RADIX, SAMPLE, and N-BODY). FFT performs the challenging one-dimensional

fast Fourier transform using the six-step FFT method. LU performs the blocked

LU factorization of a dense matrix. OCEAN simulates eddy currents in an ocean

basin. RADIX sorts a series of integer keys in ascending order using the radix algo-
rithm, while SAMPLE uses the sample sort algorithm. N-BODY simulates the inter-

action of a system of bodies in three dimensions over a number of time steps, using

the Barnes–Hut algorithm [1].

All six codes have either high communication-to-computation ratios or complex

communication patterns, making scalable performance on cluster platforms a diffi-

cult task. FFT uses a non-localized but regular all-to-all personalized communication

pattern to perform a matrix transposition; i.e., every process communicates with all

others, sending different data across the network. OCEAN exhibits primarily nearest-
neighbor patterns, but in a multigrid formation rather than on a single grid. LU uses

one-to-many non-personalized communication. RADIX uses all-to-all personalized

communication, but in an irregular and scattered fashion. In contrast, the all-to-

all personalized communication in SAMPLE is much more regular. Finally, N-BODY
requires all-to-all all-gather communication and demonstrates unpredictable send/

receive patterns.

All the SAS implementations except N-BODY come from the SPLASH-2 suite

with some additional optimizations [8,23]. FFT, LU, and SAMPLE were ported to
our PC-SMP without any modifications. For RADIX, we used the improved version

described in [23] where keys destined for the same processor are buffered together in-

stead of being exchanged in a scattered fashion. Some changes were also made to the

SPLASH-2 version of OCEAN to improve its shared-memory performance [8] on

clusters. For example, the matrix was partitioned by rows across processors instead

Table 1

Communication times (in ls) of different message sizes (in bytes) for the VMMC and VIA interfaces

Message size

4 16 64 256 1024 4096 16384

VMMC (SAS) 10.9 11.2 15.1 20.0 34.2 80.1 210

VIA (MPI) 10.3 10.6 12.4 14.3 23.8 65.5 231

H. Shan et al. / Parallel Computing 29 (2003) 167–186 171



of by blocks, and significant alterations were made to the data structures. The N-
BODY code required major modifications since the original version suffered from

the high overhead of synchronizations during the shared-tree building phase. A

new tree building method, called Barnes-spatial [21], has been developed to com-

pletely eliminate the expensive synchronization operations.
All the MPI implementations were obtained by transforming the corresponding

SAS codes using similar partitioning algorithms. Most of the MPI programs were

available from our earlier work on the Origin2000 [22–24], and ported directly onto

the PC cluster without any changes; however, OCEAN and RADIX required some

modifications for better performance. In OCEAN, the matrix is now partitioned by

rows instead of by blocks. This allows each processor to communicate only with

its two neighbors, thus reducing the number of messages while improving the spatial

locality of the communicated data. For example, by using row partitioning, the
OCEAN speedup on 32 processors improved from 14.15 to 15.20 for a data set of

514� 514 grid points.

For RADIX, in the key exchange stage, each processor now sends only one mes-

sage to every other processor, containing all its chunks of keys destined for the des-

tination processor. The receiving processor then reorganizes the data chunks to their

correct positions. On a hardware-supported cache-coherent platform, a processor

would send each contiguously-destined chunk of keys as a separate message, so that

the data could be immediately inserted into the correct position by the receiver.
However, this requires multiple messages from one processor to every other proces-

sor. Table 2 presents the RADIX speedups on the PC cluster and Origin2000 plat-

forms using both messaging strategies for a data set of 32M integers. Notice that

while the original multi-message implementation succeeds on the Origin2000 system

(better speedups), the modified single-message approach is better suited for cluster

platforms since reducing the number of messages at the cost of increased local com-

putations is more beneficial. To study the two-level architectural effect (intra-node

and inter-node), we also tested our applications by reorganizing the communication
sequence in various ways (intra-node first, inter-node first, or intra-node and inter-

node mixed). Interestingly, our results showed that the performance of the MPI pro-

grams was insensitive to the communication sequence.

All these applications have been previously used to evaluate the performance of

MPI and SAS on the Origin2000 hardware-supported cache-coherent platform

[22–24]. It was shown that SAS provides substantial ease of programming compared

Table 2

RADIX speedups on the PC cluster and Origin2000 using two messaging strategies for 32M integers

Origin2000 system PC cluster

Multi-message Single-message Multi-message Single-message

P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32

13.36 33.64 11.44 21.69 4.06 6.44 4.16 7.78

172 H. Shan et al. / Parallel Computing 29 (2003) 167–186



to MP, while performance, though application-dependent, was sometimes better

for SAS. The ease of programming holds true also on cluster systems, although some

SAS code restructuring was required to improve performance. Nonetheless, an SAS

implementation is still easier than MPI as has been argued earlier in the hardware-

coherent context [10].

A comparison between MPI and SAS programmability is presented in Table 3.

Observe that SAS programs require fewer lines of essential code (excluding the ini-

tialization and debugging code, and comments) compared to MPI. In fact, as appli-
cation complexity (e.g., irregularity and dynamic nature) increases, we see a bigger

reduction in programming effort using SAS. Note that ‘‘lines of code’’ is not consid-

ered a precise metric, but is nontheless a very useful measure of overall programming

complexity. Some differences could also arise due to the programmer�s style or expe-
rience with the programming models.

4. Performance analysis

In this section, we compare the performance of our benchmark applications under

both the MP and SAS programming paradigms. For each application, parallel

speedups and detailed time breakdowns are presented. To derive the speedup num-

bers, we use our best sequential runtimes for comparison. The parallel runtimes are

decomposed into three components: LOCALLOCAL, RMEMRMEM, and SYNCSYNC. LOCALLOCAL includes

CPU computation time and CPU waiting time for local cache misses, RMEMRMEM is

the CPU time spent for remote communication, while SYNCSYNC represents the synchro-
nization overhead. Two data set sizes are chosen for each application. The first is a

baseline data set at which the SVM begins to perform ‘‘reasonably’’ well [8]. The sec-

ond is a larger data set, since increasing the problem size generally tends to improve

many inherent program characteristics, such as load balance, communication-

to-computation ratio, and spatial locality.

4.1. FFT

The FFT algorithm has very high communication-to-computation ratio, which

diminishes only logarithmically with problem size. It requires a non-localized but

regular all-to-all personalized communication pattern to perform the matrix trans-

position, and cannot overlap the transposition and computation stages. In general,

it is much more difficult to achieve high performance on the one-dimensional

Table 3

Number of essential code lines for MPI and SAS implementations of our benchmark applications

Benchmark application

FFT OCEAN LU RADIX SAMPLE N-BODY

MPI 222 4320 470 384 479 1371

SAS 210 2878 309 201 450 950

H. Shan et al. / Parallel Computing 29 (2003) 167–186 173



FFT, studied here, compared with higher-dimensional FFTs. Speedups for the SAS

and MPI versions are presented in Table 4 for 1M and 4M data sets.

Neither MPI nor SAS show high scalability for our test cases. Increasing the data

set size improves performance, but only slightly. This is mainly due to the pure com-

munication of the transpose stage whose communication-to-computation ratio is not

affected by problem size. In the sequential case, the transposition is responsible for

approximately 16% of the overall runtime; however, it increases to 50% when using

all 32 processors. It is inherently difficult to scale pure all-to-all communication. As
the number of active processors increases, so does the contention in the network in-

terface. Additionally, since each remote request requires access to the memory bus,

increasing the number of processors has a deleterious effect on the local memory ac-

cess time. This is particularly true for our commodity 4-way PC-SMP platform

which suffers from high memory bus contention when all four processors simulta-

neously attempt to access memory. For example, the FFT LOCALLOCAL time (which in-

cludes the memory stall time) on two processors for the 4M data set is about 6 s.

However, LOCALLOCAL drops to only about 4.8 s when all four processors are used, com-
pared to an ideal of 3 s.

Observe though that the MPI implementation significantly outperforms SAS. To

better understand the performance difference, Fig. 1 presents the time breakdown for

the 4M data set running on 32 processors. We find that all the three time components

(LOCALLOCAL, RMEMRMEM, and SYNCSYNC) are much larger in SAS than in MPI. In order to main-

tain page coherence, a high protocol overhead is introduced in SAS programs, in-

cluding the time to compute diffs, creating timestamps, generating write

Table 4

Speedups for the FFT application

1M data set 4M data set

P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32

SAS 3.39 3.90 3.83 5.42

MPI 5.94 9.18 5.35 10.43

Fig. 1. FFT time breakdown for SAS and MPI on 32 processors for 4M data set.

174 H. Shan et al. / Parallel Computing 29 (2003) 167–186



notices, and performing garbage collection. This protocol overhead dramatically

increases execution time while degrading local cache performance, thus causing a

higher LOCALLOCAL time. In addition, the diffs generated for maintaining coherence im-

mediately cause pages to be propagated to their home processors, thereby increasing

network traffic and possibly causing more memory contention. Finally, at synchro-
nization points, handling the protocol requirements causes a significant dilation of

the synchronization interval, including the expensive invalidation of necessary pages.

None of these protocol overheads exist in the MPI implementation. MPI does have

the additional cost of packing and unpacking data for efficient communication; how-

ever, this overhead is incurred locally on the processors and is insignificant compared

to the protocol costs associated with SAS.

One possible strategy to improve SAS performance would be to restructure the

code so that the data structures more closely resemble the MPI implementation.
For example, instead of allocating the matrix as a shared data structure, each sub-

matrix that is transposed onto a different processor could be allocated separately.

Unfortunately, this would dramatically increase the complexity of the SAS imple-

mentation, and thus sacrifice the programming ease of the shared-memory para-

digm.

4.2. OCEAN

OCEAN exhibits a commonly used nearest-neighbor pattern, but in a multigrid

rather than a single-grid formation. Parallel speedups are presented in Table 5.

The scalability of the commodity SMP platform is relatively low, compared with pre-

viously obtained results on the hardware-supported cache-coherent architecture of

the Origin2000 [22]. Although, the communication-to-computation ratio of OCEAN
is high for small data sets, it quickly improves with larger problem sizes. This is es-

pecially true for the MPI version as shown in Table 5. Notice that SAS achieves su-

perlinear speedup between 16 and 32 processors on the smaller data set. This occurs
partly because as the number of processors increases, a larger fraction of the problem

fits in cache.

The SAS implementation suffers from expensive synchronization overheads, as

shown in Fig. 2. After each nearest-neighbor communication, a barrier synchroniza-

tion is required to maintain coherence. Further analysis of the synchronization costs

show that about 50% of this overhead is spent waiting, while the remainder is for

protocol processing [2]. Thus, the synchronization cost can be improved either by

Table 5

Speedups for the OCEAN application

258� 258 grid 514� 514 grid

P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32

SAS 2.17 5.96 5.44 6.49

MPI 4.97 8.03 7.45 15.20

H. Shan et al. / Parallel Computing 29 (2003) 167–186 175



reducing protocol overhead or by increasing the data set size. Unfortunately, there is

not enough computational work between synchronization points for the 514� 514

problem size, especially because this grid is further coarsened into smaller subgrids

during program execution. Moreover, OCEAN has a large memory requirement

due to its use of more than 20 big data arrays, required for the multigrid code. Thus,

we are prevented from running even larger data sets due to memory constraints. The

synchronization within the MPI program is dramatically lower since it is implicitly

implemented using send/receive pairs.

4.3. LU

The communication requirements of LU are smaller compared to our other bench-

mark codes, and thus we expect better performance for this application. This is con-

firmed by the results shown in Table 6. LU uses one-to-many non-personalized

communication where the pivot block and the pivot row blocks are each communi-

cated to
ffiffiffi

P
p

processors. From the time breakdown in Fig. 3, it is obvious that most
of the overhead is in the LOCALLOCAL time. The LU performance could be further im-

proved by reducing the synchronization cost caused by the load imbalance associ-

ated with the CPU wait time.

Notice that for LU, the performance of the SAS and MPI implementations are

very close in both speedup and time breakdown characteristics. The protocol over-

head of running the SAS version constitutes only a small fraction of the overall run-

time. Unlike our FFT example, the LU matrix is organized in a four-dimensional

Fig. 2. OCEAN time breakdown for SAS and MPI on 32 processors for 514� 514 grid size.

Table 6

Speedups for the LU application

4096� 4096 matrix 6144� 6144 matrix

P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32

SAS 12.48 22.98 11.79 21.78

MPI 13.15 23.04 12.31 22.43

176 H. Shan et al. / Parallel Computing 29 (2003) 167–186



array such that blocks assigned to each processor are allocated locally and conti-

guously. Thus, each processor modifies only its own blocks, and the modifications

are immediately applied to local data pages. As a result, no diffs generation

and propagation are required, greatly reducing the protocol overhead. These perfor-

mance results show that for applications with relatively low communication require-

ments, it is possible to achieve high scalability on commodity clusters using both

MPI and SAS programming approaches.

4.4. RADIX

Unlike the three regularly structured codes (FFT, OCEAN, and LU) we have dis-

cussed so far, we now investigate three applications with irregular characteristics:

RADIX, SAMPLE, and N-BODY. The RADIX sort benchmark requires all-to-all per-

sonalized communication, but in an irregular and scattered fashion. It also has a

high communication-to-computation ratio that is independent of problem size and

the number of processors. This application has large memory bandwidth require-
ments which can exceed the capacity of current SMP platforms; thus, high conten-

tion is caused on the memory bus when all four processors of a node are in use.

The ‘‘aggregate’’ LOCALLOCAL time across processors is much greater than in the unipro-

cessor case, which leads to the poor performance shown in Table 7. However, MPI

significantly outperforms the SAS implementation, since the latter has much larger

RMEMRMEM and SYNCSYNC times as shown for the 32M integers data set in Fig. 4. These costs

Fig. 3. LU time breakdown for SAS and MPI on 32 processors for 6144� 6144 matrix size.

Table 7

Speedups for the RADIX application

4M integers 32M integers

P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32

SAS 1.33 1.66 1.86 2.70

MPI 3.78 5.67 4.16 7.78

H. Shan et al. / Parallel Computing 29 (2003) 167–186 177



are due to the expensive protocol overhead of performing all-to-all communication,

for reasons similar to those already discussed for FFT.
Note that choice of the proper implementation strategy for the MPI all-to-all

communication is platform dependent. On the commodity cluster, each processor

sends only one large message to all the other processors. The message contains all

the data chunks required by the destination processor which, in turn, reorganizes

the separate blocks of data into their correct positions. This is similar to the bucket

sort algorithm used in the IS NAS Parallel Benchmark [14]. However, on the hard-

ware-supported cache-coherent Origin2000, each processor sends the contiguous

chunks of data directly to their destination processors in separate messages. Thus,

unlike the cluster, each processor sends multiple messages to all the other processors
in the system. The difference in these two approaches stems from the relatively high

latency and low bandwidth of the cluster, where it is more efficient to send fewer mes-

sages in exchange for increased computational requirements of assembling the scat-

tered data chunks.

4.5. SAMPLE

SAMPLE sorting also requires personalized all-to-all communication; however, it
is less irregular than that for the RADIX algorithm. Speedups for SAMPLE are pre-

sented in Table 8, and compare favorably with the RADIX performance. Note that

the same sequential time is used to compute the speedups for all the sorting codes.

Fig. 4. RADIX time breakdown for SAS and MPI on 32 processors for 32M integers.

Table 8

Speedups for the SAMPLE application

4M integers 32M integers

P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32

SAS 2.10 2.13 4.97 4.89

MPI 4.89 8.60 5.73 11.07

178 H. Shan et al. / Parallel Computing 29 (2003) 167–186



In SAMPLE, each processor first performs a local radix sort on its partitioned data.

Next, an all-to-all communication is used to exchange keys, and a second local sort is

conducted on the newly-received data. However, in the sequential case, only a single

local sort is required. It is therefore reasonable to expect ideal SAMPLE performance

to achieve only a 50% parallel efficiency.

Fig. 5 presents the time breakdown of SAMPLE for the larger data set on 32 pro-
cessors. The y-axis scale is the same as in Fig. 4 for easier comparisons. Observe that

the RMEMRMEM and SYNCSYNC times are significantly smaller than those of RADIX, for both
MPI and SAS. As a result, the SAMPLE algorithm outperforms RADIX. Note that

the LOCALLOCAL time for SAMPLE is only slightly greater than RADIX, even though much

more computation is performed in SAMPLE. This indicates that contention on the

memory bus for RADIX is higher than that for SAMPLE due to the greater irregular-

ity of its memory access patterns. On the Origin2000, we found that RADIX performs

better than SAMPLE in most cases; however, the reverse is true on our PC cluster.
This result further verifies that reducing messages is much more important on a clus-

ter platform than reducing the local computations.

4.6. N-BODY

Finally, we examine the performance of the N-BODY simulation. We use the

Barnes–Hut [1] algorithm which employs a tree structure to reduce the complex-

ity from OðNÞ to OðN logNÞ. Hence, tree building is an essential component of

Fig. 5. SAMPLE time breakdown for SAS and MPI on 32 processors for 32M integers.

Table 9

Speedups for the N-BODY application

32K particles 128K particles

P ¼ 16 P ¼ 32 P ¼ 16 P ¼ 32

SAS 6.05 9.31 10.64 14.30

MPI 8.15 14.10 14.05 26.94

H. Shan et al. / Parallel Computing 29 (2003) 167–186 179



the solution process. Table 9 shows that MPI once again outperforms SAS, espe-

cially for the larger data set. For 128 K particles on 32 processors, MPI achieves al-

most twice the performance of SAS.

The time breakdown for this larger data set on 32 processors is shown in Fig. 6.
The SAS implementation has higher SYNCSYNC and RMEMRMEM times compared to MPI, but

the synchronization overhead clearly dominates the overall runtime. This is because

at each synchronization point, many diffs and write notices are processed by the

coherence protocol. In addition, a large number of shared pages are invalidated.

Further analysis shows that 82% of the barrier time is spent on protocol handling.

This expensive synchronization overhead is incurred in all of our applications except

LU, causing a degradation of SAS performance.

Unlike our other five applications, the MPI version of N-BODY has a higher
LOCALLOCAL time than the SAS counterpart. This is due to the use of different high-level

algorithms for each programming model. In the SAS implementation, each proces-

sor builds one part of a globally shared tree; while in MPI, a locally essential tree is

created on each processor. Building the locally essential tree across distributed mem-

ories is much more complex than using a shared memory to build a single globally

addressable tree. Therefore, there is a higher computational tree-building cost in

the MPI implementation [24]. However, with large data sets, tree building becomes

computationally insignificant compared to the other phases of the N-BODY simula-
tion, most notably the force calculation.

4.7. Hybrid programming

All these results demonstrate that MP programming significantly outperforms

SAS for our application suite. However, it is not obvious that MP within each

SMP is the most effective use of the system. A recently proposed programming para-

digm combines two layers of parallelism, by implementing SAS codes within each
SMP while using MP among the SMP nodes. Here, the hardware directly supports

cache coherence for the SAS code segments, while inter-SMP communication relies

on the network through MP. This mixed-mode/hybrid programming strategy allows

Fig. 6. N-BODY time breakdown for SAS and MPI on 32 processors for 128K particles.

180 H. Shan et al. / Parallel Computing 29 (2003) 167–186



codes to potentially benefit from loop-level parallelism in addition to coarse-grained

domain-level parallelism. Although this hybrid programming methodology is the

best mapping to our underlying architecture, it remains unclear whether the perfor-

mance gains of this approach compensate for its drawbacks.

Table 10 presents the hybrid MPIþ SAS runtimes on 32 processors for the larger

data sets of our application suite; Fig. 7 shows the corresponding speedup numbers.

Overall, the hybrid implementation is within 12% of the pure MPI codes, and offers a
small performance advantage in some cases. This is due to tradeoffs between the two

approaches. For example, while SAS programming can potentially reduce the intra-

SMP communication compared to MPI, it may require the additional overhead of

explicit synchronizations. In addition, mixed-mode programming has the inherent

disadvantages of adversely affecting portability and increasing code complexity.

The latter is especially true for irregularly structured applications, such as the N-
BODY simulation. Here, the hybrid implementation requires two types of tree-build-

ing algorithms: the MP version uses a distributed locally essential tree, while the
SAS layer implements the additional data structure of a globally shared tree. Thus,

in general, a pure MPI implementation is a more effective strategy than hybrid pro-

gramming on SMP clusters. Similar conclusions have recently been drawn for other

architectures and application domains [4,7,17].

Table 10

Runtimes (in s) for SAS, MPI, and hybrid MPI+SAS implementations of the benchmark applications on

32 processors for the larger data sets

Benchmark application

FFT OCEAN LU RADIX SAMPLE N-BODY

SAS 3.12 39.6 126 10.1 5.60 6.08

MPI 1.62 16.9 123 3.52 2.48 3.24

Hybrid 1.83 15.1 117 3.65 2.78 3.23

Fig. 7. Speedup comparison of the hybrid implementation with SAS and MPI on 32 processors for the

larger data sets of the benchmark applications.

H. Shan et al. / Parallel Computing 29 (2003) 167–186 181



5. MPI collective functions

An interesting question for clusters, particularly hybrid clusters of SMPs, is how

to structure collective communication. In the MPI library, the communication oper-

ations can be divided into three broad categories: the basic send/receive functions,
collective functions, and other operations. The performance of the basic send/receive

operations primarily depends on the underlying communication hardware and the

low-level software. On the other hand, the performance of the collective functions

is affected by their individual implementations. Research in this area has been per-

formed for a variety of platforms [26]. In this section, we discuss the algorithms suit-

able for our platform: a cluster of 4-way SMPs. Specifically, we explore the

algorithms for two collective functions, MPI_Allreduce and MPI_Allgather,

that are used in our applications. Here, we label the MPI/Pro implementation as
‘‘Original’’ (the exact algorithms used are not well documented) and use it as our

baseline.

The most commonly used algorithm to implement MPI_Allreduce is the binary

tree (B-Tree), shown in Fig. 8. The structure of our 4-way SMP nodes motivates us

to modify the deepest level of the B-Tree to a quadtree structure, called B-Tree-4.

Note that within an SMP node, the communication can be implemented either in

shared memory or by using basic MPI send/receive functions; however, no measur-

able performance difference was observed between these two intra-node approaches.
Timing results for reducing a double-precision floating-point variable per processor

are shown in Table 11. The B-Tree implementation is about 7% faster than the MPI/

Pro version, while the B-Tree-4 algorithm improves efficiency by another 5%. This

Fig. 8. The algorithms used to implement MPI_Allreduce on two 4-way SMP nodes.

Table 11

Execution times (in ls) for different MPI_Allreduce implementations on 32 processors (8 nodes) for one

double-precision variable per processor

Implementation algorithm

Original B-Tree B-Tree-4

One float 1117 1035 981

182 H. Shan et al. / Parallel Computing 29 (2003) 167–186



strategy can be easily extended to larger SMP nodes, leading to greater improve-

ments in those cases.

We explored several different algorithms for the MPI_Allgather function. The

first two methods were B-Tree and B-Tree-4 described above. In the B-Tree-4 algo-

rithm, after the root processor (level 0 in Fig. 8) collects all the data, it broadcasts the
data back to the processors at level 1 and below. Notice though that before the

broadcast begins, each processor at level 1 already has a copy of all the data it col-

lected from its own subtree. These two processors at level 1 can therefore directly ex-

change their data between themselves instead of sending them to the root processor

and receiving them back. In other words, it is redundant to broadcast all the data to

these processors at level 1. In fact, this idea can be extended to the lowest level of the

tree (bounded by the size of an SMP node). We call this algorithm B-Tree-4�.
In Table 12, we present execution times of the different implementations of

MPI_Allgather for both one and 1000 integers per processor. Results show that

the B-Tree-4� algorithm improves performance on our PC-SMP platform signifi-

cantly, almost 27% and 41% compared to the original MPI/Pro implementation,

for the two cases, respectively.

We applied these improved MPI_Allreduce and MPI_Allgather algorithms

to four of the codes in our application suite. Table 13 presents the speedups with

both the original MPI/Pro and our new implementations on 32 processors for the

larger data sets of OCEAN, RADIX, SAMPLE, and N-BODY. Since most of the re-
mote communication time in the applications is spent on the send/receive functions,

the overall performance improves only slightly. SAMPLE shows the best results,

achieving a 9% gain in performance. Codes relying heavily on these collective com-

munication operations would obviously show a larger benefit. However, these results

Table 12

Execution times (in ls) for different MPI_Allgather implementations on 32 processors (8 nodes) for one

and 1000 integers per processor

Implementation algorithm

Original B-Tree B-Tree-4 B-Tree-4�

One integer 1538 1540 1479 1124

1K integers 1633 1052 993 975

Table 13

Speedups of four applications with the original and improved implementations of MPI collective functions

on 32 processors for the larger data sets

Benchmark application

OCEAN RADIX SAMPLE N-BODY

Original 15.20 7.78 11.07 26.94

New 15.60 8.02 12.10 27.02

H. Shan et al. / Parallel Computing 29 (2003) 167–186 183



validate our improved implementations, and present future library developers with

an approach for reducing collective communication overheads on SMP clusters.

6. Conclusions

In this paper, we studied the performance of and the programming effort required

for six applications using the MP and SAS programming paradigms on a 32-proces-

sor PC-SMP cluster. The system consisted of eight 4-way Pentium Pro SMPs run-

ning Windows NT 4.0. To make a fair comparison between the two programming

methodologies, we used the best known implementations of the underlying commu-

nication libraries. The MP version used MPI/Pro which is developed directly on top

of Giganet by the VIA interface. The SAS implementation used the GeNIMA SVM
protocol over the VMMC communication library, which runs on Myrinet. Experi-

ments showed that VIA and VMMC have similar communication characteristics

for a range of message sizes on our cluster platform.

Our application suite consisted of codes that typically do not exhibit scalable

performance under shared-memory programming due to their high communica-

tion-to-computation ratios and/or complex communication patterns. Three regular

applications (FFT, OCEAN, and LU) and three irregularly structured applications

(RADIX, SAMPLE, and N-BODY) were tested. Porting these codes from the SGI Or-
igin2000 system required some modifications to improve their performance on the

cluster platform. Changes included reducing the number of messages in the MP ver-

sions, and removing fine-grained synchronizations from the SAS codes.

SAS provided substantial ease of programming, especially for the more complex

applications which are irregular and dynamic in nature. However, unlike in a previ-

ous study on hardware-coherent machines where the SAS implementations were also

performance-competitive with MPI, and despite all the research in SVM protocols

and communication libraries in the last several years, SAS achieved only about half
the parallel efficiency of MPI for most of our applications. The LU benchmark was

an exception, in which the SAS implementation on the PC cluster showed very sim-

ilar performance compared to the MPI version. The higher runtimes of the SAS

codes were due to the excessive cost of the SVM protocol overhead associated with

maintaining page coherence and implementing synchronizations. These costs include

the time to compute diffs, create timestamps, generate write notices, and per-

form garbage collection. Future research should focus on reducing this synchroniza-

tion cost. Possible approaches may include applying the diffs before the
synchronization points, moving the shared-page invalidation operation out of syn-

chronization points, and increasing the protocol hardware support.

We also investigated a hybrid MPIþ SAS strategy that combined loop-level and

domain-level parallelism. Even though this model naturally matched the architecture

of our cluster platform, the results were only marginally better. Overall, our results

demonstrated that if very high performance is the goal, the difficulty of MP pro-

gramming appears to be necessary for commodity SMP clusters of today. On the

other hand, if ease of programming is paramount, then SAS provides it at approxi-

184 H. Shan et al. / Parallel Computing 29 (2003) 167–186



mately a factor-of-two deterioration in performance for many applications, and

somewhat less for others. This is encouraging for SVM, given the relative maturity

of the MPI library and the diverse nature of our test suite. Finally, we presented new

algorithms for improved implementations of MPI collective functions on PC clus-

ters. Results showed significant gains compared to the default implementation.

Acknowledgements

The work of the first two authors was supported by NSF under grant number

ESS-9806751 to Princeton University. The second author was also supported by PE-

CASE and a Sloan Research Fellowship. The work of the third author was

supported by the US Department of Energy under contract number DE-AC03-

76SF00098.

References

[1] J.E. Barnes, P. Hut, A hierarchical OðN logNÞ force-calculation algorithm, Nature 324 (1986) 446–

449.

[2] A. Bilas, C. Liao, J.P. Singh, Using network interface support to avoid asynchronous protocol

processing in shared virtual memory systems, in: Proceedings of the 26th International Symposium on

Computer Architecture, Atlanta, GA, 1999, pp. 282–293.

[3] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, W.-K. Su, Myrinet:

a gigabit-per-second local area network, IEEE Micro 15 (1995) 29–36.

[4] F. Cappello, D. Etiemble, MPI versus MPIþOpenMP on the IBM SP for the NAS benchmarks, in:

Proceedings of the SC2000 Conference, Dallas, TX, 2000.

[5] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, K. Li, VMMC-2: efficient support for reliable,

connection-oriented communication, in: Proceedings of the 5th Hot Interconnects Symposium,

Stanford, CA, 1997.

[6] Giganet, Inc., Available from URL: http://www.giganet.com/.

[7] D.S. Henty, Performance of hybrid message-passing and shared-memory parallelism for discrete

element modeling, in: Proceedings of the SC2000 Conference, Dallas, TX, 2000.

[8] D. Jiang, B. O�Kelly, X. Yu, S. Kumar, A. Bilas, J.P. Singh, Application scaling under shared virtual

memory on a cluster of SMPs, in: Proceedings of the 13th International Conference on

Supercomputing, Rhodes, Greece, 1999, pp. 165–174.

[9] D. Jiang, H. Shan, J.P. Singh, Application restructuring and performance portability on shared

virtual memory and hardware-coherent multiprocessors, in: Proceedings of the 6th ACM Symposium

on Principles and Practice of Parallel Programming, Las Vegas, NV, 1997, pp. 217–229.

[10] D. Jiang, J.P. Singh, Scaling application performance on cache-coherent multiprocessors, in:

Proceedings of the 26th International Symposium on Computer Architecture, Atlanta, GA, 1999,

pp. 305–316.

[11] S. Karlsson, M. Brorsson, A comparative characterization of communication patterns in applications

using MPI and shared memory on an IBM SP2, in: Proceedings of the 2nd International Workshop

on Communication, Architecture, and Applications for Network-Based Parallel Computing, Las

Vegas, NV, 1998, pp. 189–201.

[12] K. Li, P. Hudak, Memory coherence in shared virtual memory systems, ACM Transactions on

Computer Systems 7 (1989) 321–359.

[13] H. Lu, S. Dwarkadas, A.L. Cox, W. Zwaenepoel, Quantifying the performance differences between

PVM and TreadMarks, Journal of Parallel and Distributed Computing 43 (1997) 65–78.

H. Shan et al. / Parallel Computing 29 (2003) 167–186 185

http://www.giganet.com/


[14] NAS parallel benchmarks, Available from URL: http://www.nas.nasa.gov/Software/

NPB/.

[15] L. Oliker, R. Biswas, Parallelization of a dynamic unstructured algorithm using three leading

programming paradigms, IEEE Transactions on Parallel and Distributed Systems 11 (2000) 931–940.

[16] L. Oliker, R. Biswas, H.N. Gabow, Parallel tetrahedral mesh adaptation with dynamic load

balancing, Parallel Computing 26 (2000) 1583–1608.

[17] L. Oliker, X. Li, P. Husbands, R. Biswas, Effects of ordering strategies and programming paradigms

on sparse matrix computations, SIAM Review 44 (2002) 373–393.

[18] S.K. Reinhardt, J.R. Larus, D.A. Wood, Tempest and typhoon: user-level shared memory, in:

Proceedings of the 21st International Symposium on Computer Architecture, Chicago, IL, 1994, pp.

325–336.

[19] D.J. Scales, K. Gharachorloo, C.A. Thekkath, Shasta: a low overhead, software-only approach for

supporting fine-grain shared memory, in: Proceedings of the 7th International Conference on

Architectural Support for Programming Languages and Operating Systems, Cambridge, MA, 1996,

pp. 174–185.

[20] I. Schoinas, B. Falsafi, A.R. Lebeck, S.K. Reinhardt, J.R. Larus, D.A. Wood, Fine-grain access

control for distributed shared memory, in: Proceedings of the 6th International Conference on

Architectural Support for Programming Languages and Operating Systems, San Jose, CA, 1994,

pp. 297–306.

[21] H. Shan, J.P. Singh, Parallel tree building on a range of shared address space multiprocessors:

algorithms and application performance, in: Proceedings of the 12th International Parallel Processing

Symposium, Orlando, FL, 1998, pp. 475–484.

[22] H. Shan, J.P. Singh, A comparison of MPI, SHMEM and cache-coherent shared address space

programming models on a tightly-coupled multiprocessor, International Journal of Parallel

Programming 29 (2001) 283–318.

[23] H. Shan, J.P. Singh, Parallel sorting on cache-coherent DSM multiprocessors, in: Proceedings of the

SC99 Conference, Portland, OR, 1999.

[24] H. Shan, J.P. Singh, L. Oliker, R. Biswas, A comparison of three programming models for adaptive

applications on the Origin2000, Journal of Parallel and Distributed Computing 62 (2002) 241–266.

[25] J.P. Singh, A. Gupta, M. Levoy, Parallel visualization algorithms: Performance and architectural

implications, IEEE Computer 27 (1994) 45–55.

[26] S. Sistare, R. vandeVaart, E. Loh, Optimization of MPI collectives on clusters of large-scale SMPs, in:

Proceedings of the SC99 Conference, Portland, OR, 1999.

[27] Virtual interface architecture, Available from URL: http://www.viarch.org/.

186 H. Shan et al. / Parallel Computing 29 (2003) 167–186

http://www.nas.nasa.gov/Software/NPB/
http://www.nas.nasa.gov/Software/NPB/
http://www.viarch.org/

	Message passing and shared address space parallelism on an SMP cluster
	Introduction
	Platform and programming models
	SAS programming model
	MP programming model

	Benchmark applications
	Performance analysis
	FFT
	OCEAN
	LU
	RADIX
	SAMPLE
	N-BODY
	Hybrid programming

	MPI collective functions
	Conclusions
	Acknowledgements
	References


